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The paper presents a comprehensive analysis of gas motion created by a strong 
explosion in an atmosphere whose density is an exponential function of altitude. 
For the near field (i.e. short times after initiation), an exact analytical solution of 
the equations of motionis obtained by means of a perturbation technique. For the 
far field (i.e. long times after initiation), a similarity solution associated with a 
logarithmic front trajectory is derived. The two are shown to be well matched 
with each other. Finally, a fully-algebraic approximate solution is given that 
qualitatively reproduces all the salient features of the exact and asymptotic 
solutions, while quantitatively i t  is in fair agreement with their results. 

1. Introduction 
Presented here is a study of gas motion initiated by a strong explosion in an 

exponential atmosphere, a medium whose density varies exponentially with 
altitude. The flow field of interest is sufficiently large in comparison with the 
source that i t  may be treated as resulting from a point explosion, while, as a 
consequence of the relatively high energy of the wave, counter-pressure effects 
can be neglected. 

I n  essence, then, the problem is as follows. A finite quantity of energy is released 
in an exponential atmosphere, generating a strong blast wave. Initially, the latter 
behaves like a spherical blast in a uniform medium. Shortly thereafter, the expo- 
nential dependence of the ambient density on height causes the descending shock 
front to  decay faster than that propagating in the ascending direction. This 
produces an asymmetry associated with burgeoning of the ascending part of the 
wave front. Eventually this leads to a ‘blow-out’ in the ascending direction (i.e. 
the front reaches infinity in a finite time). Early treatments of this problem were 
described in Zel’dovich & Raizer (1967). It was speculated by Kompaneets (1960) 
that  perhaps an opposite phenomenon would occur in the descending part (i.e. 
a complete ‘slow-down’), which would involve an infinite amount of time for the 
front to propagate over a finite distance. However, by now it has been established 
that this does not take place, whereas the process of ‘blow-out’ is considered to 
be physically realistic. 

Immediately upon initiation, the blast wave has a structure corresponding to 
the classical Taylor-Sedov similarity solution; then the motion becomes non- 
self-similar. However, a t  later times, both in the ascending and the descending 
part of the wave, the flow field near the shock front becomes again self-similar. 
Such similarity solutions were first obtained by Raizer (19644,  and later refined 
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by Hayes (1968 a, b) ,  who expressed the results in the form of integral curves on 
an appropriate phase plane for the problem, and extended the scope of the 
analysis to a more general class of problems, by considering the case where the 
area of the front surface varies exponentially with radius. 

The intermediate, non-similar motion was treated by Andriankin et al. (1962), 
who took into account the fact that the shock surface is not normal to the radius 
vector, causing a non-zero component of the flow velocity in the azimuthal direc- 
tion. However, they based their analysis on other simplifying assumptions, the 
most serious being the idealization that the pressure within the blast wave envelope 
is, a t  each instant, uniform throughout the flow field. In  order to obtain a more 
realistic solution, and derive proper scaling laws for the flow field, Laumbach & 
Probsteiii (1969) performed a careful analysis of the problem (which will be 
referred to as LP), based on the conservation integrals of the motion. Their 
approach was based upon recognition of the fact that  most of the mass within the 
blast wave is concentrated near the front, so that the integrands could be 
expanded into Taylor series about their values a t  the front and, for the solu- 
tion, the series truncated to second order. Their results are consequently quite 
good as long as such truncation can be done with sufficient accuracy, which for 
the descending part of the wave is indeed the case, even for large times after 
initiation. However, for the ascending part, the L P  solution is valid only over R 

relatively short period of time (i.e. until the front travels two or three atmos- 
pheric scale heights). At later times, the error involved in the truncation becomes 
more pronounced, leading eventually to an overestimate of the blow-out time. 

This problem was treated by Sachdev (1972), on the basis of the method of 
Brinkley & Kirkwood (1947), which like the LP technique permits a simple 
analytic solution to be obtained directly from the conservation integrals of the 
motion. The actual key to Sachdev’s solution is a non-dimensional parameter 
which expresses, in effect, the flow-work performed by the over-pressure along 
a particle path from the shock to infinity. The value of this parameter is adjusted 
in such a way that, a t  large times, it leads to the correct form for the asymptotic 
motion of the front, irrespective of whether the atmosphere is uniform or not. 
The results obtained in this way are in fair agreement with LP, as well as with 
a numerical solution obtained by Lutzky & Lehto (1968) for a blast wave in 
a spherically symmetric atmosphere where the density increases exponentially 
with radius in all directions. 

Our study of the near field is based on the use of a perturbation technique 
similar to that of Xakurai (1953). The solution is expressed in the form of a Taylor 
series, resembling that obtained by Bach & Lee (1969) for a strong implosion. The 
results are shown to be quite accurate even up to  about 10 scale heights, com- 
paring favourably, €or short times after initiation, with those of LP. For the far 
field, a similarity solution is obtained similar to that of Raizer (1964b) and Hayes 
(1968 a, 6 ) .  The near-field and far-field solutions match sufficiently well with each 
other to  render the extremely difficult analysis of the intermediate flow regime 
virtually unnecessary. Finally, presented here is an approximate algebraic solu- 
tion, whose results are in fair quantitative agreement with those obtained by the 
more elaborate techniques, while qualitatively it reproduces all the properties of 
the others. 



On blast waves in exponential atmospheres 107 

2. Governing equations 
Following the LP method, we assume the motion in the azimuthal direction to  

be negligible, so that the flow is essentially radial, while (as stated in 5 1) the ex- 
plosion is so strong that counter-pressure effects can be neglected. Under such 
circumstances, assuming also that the medium behaves as a perfect gas with 
constant specific heat, our problem can be expressed most conveniently in terms 
of the non-dimensional, expanded form of the conservation equations for the 
Eulerian space profiles of a point-symmetrical blast wave (see e.g. Oppenheiin 
et d. 1972) as 

I n  the above, x = r/R (where r is the space co-ordinate, while R is t,he front 
radius) and ( = RIA (where A is the characteristic scale height of the atmosphere) 
are the two independent variabIes. The dependent variables are f = u/zu (where 
u is the particle velocity while w is the front propagation speed), h = p/pa and 
g = p/paw2 (where p and p are the local density and pressure, while pa is the 
atmospheric density immediately ahead of the front). I n  addition, 

and 

dlnw dint h EE -2- = -2- 
d In rn dln‘ 

are the decay coefficients of the front velocity and of the atmospheric density, 
respectively, the dot denoting the derivative with respect to  time, while y is the 
specific heat ratio. 

The density of the exponential atmosphere is distributed as 

Pa = pcexp(-5cos@, ( 5 )  

where pc is the initial value of the atmospheric density a t  the centre of explosion, 
while B is the angle between the front radius vector emanating from the centre of 
explosion and the vertical. From (4 b )  and ( 5 ) ,  it follows that 

w = .gcostl, 

6 -  = w- 
ag awe 

whence for any fixed direction 
a a 

I n  the case of negligible counter-pressure effects, the boundary conditions at  
the front are given by the strong-shock relations 
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and 
0 

Moreover, one has the symmetry condition of zero particle velocity in the centre 
a t  all times 

f ( 0 , t )  = 0. (6 c )  

To determine the front trajectory, one has to take into account the energy 
of the wave, which, for the case a t  hand, can be expressed as 

where E, is the energy of explosion, a constant specified by the explosive charge, 
while 

is the so-called energy integral. Assuming that the explosion energy is equally 
distributed in all directions, the integration with respect to 8 becomes indepen- 
dent of the rest. Thus, introducing the non-dimensional expressioiis for the front 
velocity and radius, and taking ( 5 )  into account, (7)  becomes 

-- - $&?exp ( -  6 cos 8 )  = constant. EO 
4nA5pC 

Finally, by virtue of ( 5 b ) ,  (8) yields the following expression for the decay para- 
meter of the front, velocity: 

+ 3 - w ,  
ding w dt = -2- = _-  
dlnw tdw (9) 

where t is the time co-ordinate. From the latter the dependence of the front 
velocity and position on time can be evaluated by quadratures. 

3. Near field 
3.1. Governing equations 

For the flow field developed at short times after initiation, the governing equa- 
tions can be solved by adopting w as t,he perturbation paramet,er and expressing 
the dependent variables in polynomial form, namely 

f = f o + f 1 w + f 2 w 2 +  ..., 
g = g0+g1w+g2w2+ ..., 

h = h0+h1w+h,w2+ ..., 
h = ho+hlW+h2w2+ ..., 

where fi, gi and hi are only functions of x, while the coefficients hi are constant. 
Upon substitution of the above in (1)-(3), while taking into account ( 4 b ) ,  and 
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grouping coefficients of like powers of w ,  one obt,ains the following set of ordinary 
differential equations: zero-order, 

tions a t  x = 1 are 
2 

ho(l) = - y + l  fo(l) = 90(1) = - 9  

y-  1’ Y + l  

hl(1) =f1(1) = SAl) = h2(1) =fAl) = 92(1) = 0, 

fO(0) =f1(0) =f2(0) = 0. 

(14b) 

(14c) 

The trajectory of the front can be determined by the integration of (9), pro- 

while at 5 = 0 

vided that h = A(@)  is known. For this purpose we set 

y = y o + y 1 w + $ 2 w 2 + .  .., (15) 

where, by substituting the first three expressions of (10) into (7),  one has 

On t,he basis of (15), (9) yields 

$2 (y1)23 
A - 3 ,  A --l-l, $ h 2 = 2 - -  - 

- $0 $0 Yo 0 -  

representing the desired expressions for the evaluation of h as implied by the 
last of (10). 
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3.2. Solution 

The various orders of solutions are determined in the following manner. 
First, the zeroth-order equations ( 1  1) are solved numerically, using t'he Runge- 

Kutta technique with boundary conditions specified by (14), and ho = 3 according 
to the first of (17). One obtains thus the well-known Taylor-Sedov similarit'y 
solution for a strong blast wave of constant energy content. This yields the value 
of yo  by virtue of the first expression of (16). With this as a background, one can 
proceed to  the solution of the first-order equations (12), starting froni their 
boundary conditions a t  the front (i.e. a t  x = 1). This time, however, there is an 
unknown parameter A,  to be determined. This was found by an iterative procedure, 
based first on the demand that the solution of (12) satisfy the last condition of (14) 
(i.e.fi(0) = 0) ,  then on assuring oneself that the solution is correct, by evaluating 
8, from (16) and checking the value of A, by using (17). It was found that, using 
the secant method, only one or two iterations were required to yield values of 
I f l \  < lo-* a t  IC = 0 that satisfied the check based on (16) and (17) with an accu- 
racy of [All < The second-order equations ( 1 3 )  were treated in a manner 
similar, with A, as the iteration parameter. 

Having found the various coefficients of the polynomial expansions of the 
dependent variables, one can now determine their profiles by the use of (10) for 
any fixed (but not too large) value of (0. It turns out, as i t  will be demonstrated 
later, that this yields reasonable results up to 1 0 1  N 10, a value approaching the 
similarity solution for the asymptotic regime of the far field. The shock trajec- 
tories for various directions and the shock envelope itself are then determined as 
follows. 

According to the last of (10) and the first of (17)) the decay parameter can be 
written as 

h = 3 + H ( w ) ,  

where H ( w )  = h,w+h2w2+ .... 

Thus, from the definition of h given by (9)) one obtains 

whence 

To evaluate the constant A ,  we observe that, as <+ 0, t+ A c t .  Consequently, 
expression (8) for the energy of explosion yields 

This expression lends itself to use as a proper basis for a non-dimensional time 
scale 

T = A t = t [  Eo 1 .  4 

4n&, Yo 
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Y 1.2 1.4 3 

A2 

A 3  

3" 
f l  

8 2  

9 3  

A, - 0.919651 - 0.908483 - 0.864823 
0.0299325 0.0290919 0.0287658 
- 0.002970 - 

0.85638 0.423289 0.065912 
0.068731 0.038739 0~0089098 
0.015564 0.007915 0~001550 
- 0.001035 - 

TABLE 1. Polynomial coefficients for the decay parameter A ,  and the 
non-dimensional energy integral 3 

The above time scaling parameter differs from that of LP by the factor (yo)-$. 
In  this connexion it is worth noting that, with good approximation, for y = 1.2 
to i.4, 

0.17 
$0 - y -  1' 

while, for y as large as 3, 
0.13 

do - Y-1 
It' is, in fact, t'he above approximation that provided the basis for the derivation 
of the scaling factor in LP, and its validity has been confirmed by the results of 
our computations. 

In terms of the non-dimensional t'ime scale, (18) can be written as 

tvhence 

Using (4a),  one can obtain from (22) the shock trajectory for any given polar 
direction 8. I n  order to determine the shock envelope, (22) is differentiated with 
respect t'o 0 a t  constant T, yielding 

Equation (23) can be integrated using the Runge-Kutta technique, both for the 
ascending (i.e. for 0 < 8 < 90") and the descending (i.e. for 90 < 0 < 180") direc- 
tion, by starting from 8 = go", where w = 0, while the boundary condition is 

t(9O") = (#T)f .  

3.3. Results 

Coefficients of the polynomial expansions for the decay parameter and the energy 
integral, evaluated by us for various values of y ,  are listed in table 1. It is of 
interest t o  note that the values of the coefficients for h are almost independent of 
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FIGURE 1.  Particle velocity profiles for various values of w ,  the decay 

parameter of atmospheric density ( y  = 1.4). 
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FIGURE 2. Pressure profiles for various values of w ( y  = 1.4). 
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0 0.2 0.4 0.6 0.8 1 
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FIGURE 3. Density profiles for various values of w ( y  = 1.4). 

y. In  order toobtain anestimateof thevalidity of thesecond-order solution, wealso 
evaluated the third-order coefficients for y = 1.4. According to  the power series 
expansion for A invoked by (lo), it appears from the values of A, and A, that the 
third-order term will acquire the same order of magnitude as the second-order 
term when 10-11 - 10. Hence, it is reasonable to expect that  the second-order solu- 
tion should be quite accurate for 1wI < 10. At the same time, as will be shown 
later, this is precisely the regime where singular characteristics show a tendency 
to develop, and the shock motion is then governed primarily by the asymptotic 
solution valid a t  later times. 

Space profiles of the non-dimensional gasdynamic parameters, the particle 
velocity f, pressure g, and density h, for y = 1.4, are given in figures 1-3, respec- 
tively, for various values of o between - 10 (in the descending direction) and + 10 
(in the ascending direction). The behaviour of the latter is typically quite similar 
to that of profiles occurring behind rapidly-accelerating shock fronts, as in the 
final phases of collapse of an implosion. For the descending direction, the develop- 
ment of a wrinkle in pressure and density profiles close to  the front indicates the 
genesis of a similarity solution. 

Figure 4 depicts shock envelopes for various values of T in the case of y = 1.4. 
I n  order to  compare our results with the LP solution, we plotted in figure 5 the 

8 F L M  71 
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t 

FIGURE 4. Shock envelopes for various values of the non-dimensionel time scale 
T(y = 1.4). (i) Approximate analytical solution. 

FIGURE 5. Comparison between the shock envelope determined hy the present 
teclmique and that of LP for 7 = 8, corresponding to T = 8.65 ( y  = 1.2). 
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FIGURE 6. Shock velocity as FL function of shock position. (i) Results of LP for y = 1.4. 
(ii) Present results for y = 1.2 arid 1.4. (iii) Approximate solution. 

shock envelope of L P  for their r = 8 and that obtained by us for 
T = r/$o = 8-65, both in the case of y = 1.2. As may be seen, the two are 
practically identical. 

The non-dimensional shock velocities as a function of shock radius are pre- 
sented in figure 6. Our results for y = 1.2 and 1.4 are shown by curves (i).While 
these are practically identical to those of L P  for y = 1.4 (curves (ii)) in the 
descending direction, they differ slightly in the ascending direction, tending 
toward a shorter blow-out time. 

4. Far field 
4.1. Governing equations 

From the preceding results it appears that, as the front radius becomes large, the 
profiles of flow variables show an ever-increasing tendency to acquire some 
interesting features immediately behind the front. Moreover, while the values of 
the variable are bounded, their slopes become quite steep. This is indicative 
of the approach to the far-field solution corresponding to the limiting case of 
large 161 or, by the same token, large ( w ( .  In  this regime, one can assume that 
a similarity solution applies, i.e. the terms @/at on the right-hand side of the 
governing equations (1)-(3) can be considered negligibly small. I n  addition, 
terms involving x-1 can also be neglected, since they should be small in the 
vicinity of tile front where x = i ,  in comparison with those containing the 

8-2 
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derivatives with respect to x. Under such circumstances, (1)-(3) become, 
respectively, 

dh df 
dx dx 

d f  i d g  

wh-( f -x)--h-  = 0, 

i A f - ( f - X ) - - - -  dx hdx = 0, 

dg df (A+w)g-( f -x)--yg-  = 0. 
dx dx 

(24) 

Also, for a physically meaningful asymptotic solution one must have 

h = - p w ,  (27) 

where /3 is a positive constant. The specific reasons for this were given by Hayes 
(1 968 a, b ) ,  who represented this property by the formula for the front velocity, 

0 1 .  .gcose = - 
TB-T' 

while his results were expressed in terms of numerical values for the constant a. In 
( 2 8 )  TB represents the blow-out time (i.e. the time a t  which 6 becomes infinite). 
A similar relationship is obtained from (27) by taking into account the definitions 
of h and w given by (4), and integrating twice, to derive first an expression for the 
front velocity, then one for its trajectory. These are, in turn, 

(29) 

and (30) 

where k is a constant of integration, while tl and Tl are co-ordinates of an arbi- 
trary reference point of the front trajectory. For Tl = TB, while t1 = co, (29) and 
(30) yield 

= k exp ( i p t  cos e), 
exp ( - &ptl cos 8) - exp ( - ipf; cos 0 )  = +k(T - Tl) p cos 8, 

It follows from (28) and (31) that 
p = 2/01. 

4.2. Solution 
As far as the flow field is concerned, the results obtainable from (24)-(26) are 
valid only within a vanishingly narrow zone behind the front as [wI +co. Hence, 
the only interesting problem in this case is the determination of the front trajec- 
tory, i.e. the evaluation of the parameter p, 

Solution of a self-similar blast-wave problem is, as a rule, reducible to the task 
of determining an integral curve on an appropriately defined phase plane. 
Following the technique of Oppenheim et al. (1972)) the governing equations are 
reduced for this purpose into a single differential equation, by the introduction 
of the phase co-ordinates 

F = f lx  and 2 = yg/hx2. (33) 
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F 

FIGURE 7. Integral curves for y = 1.4. Point 8 represents the state immediately behind the 
shock front. Curve (i) is the locus of saddle points 2 = (1 -3’)2. Curves (ii) and (iii) are simi- 
larity solutions for /3 = 0.36810 (ascending) and p = 1.43188 (descending), respectively. 
Curve (iv) is the locus of singularities corresponding to the classical Taylor-Sedov solution. 

Equations (24)-(26) then yield 

(34) 
where w has been eliminated by virtue of (27). 

point representing the strong-shock boundary conditions, namely 
The physically meaningful integral curve satisfying (34) must pass through the 

Moreover, as it is well known, for a physically meaningful solution the integral 
curve must pass smoothly through the locus of a saddle-point singularity (see 
figure 7 (i)) specified by the parabola 

z = (1-P)2, (36) 
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1.2 1.4 Y 
Ascending 0.30913 (0.309) 0.36810 (0.367) 
Descending 1.51704 1.4319 (1.437) 

TABLE 2. Critical values for /J', the proportionality coefficient between the decay parameters 
of the front velocity and atmospheric density. (Shown in brackets are the values of 2/u 
obtained by Hayes 1968a, b.) 

i.e. it must coincide with an appropriate axis of the singularity. These conditions 
are sufficient to determine proper values of p for the ascending as well as the 
descending part of the blast wave, and, hence, the appropriate integral curves. 

Accordingly, then, we proceed as follows. Since the singularity is due only to 
the second term in (34 ) ,  we substitute the expression for Z from (36) into the first 
term, and use the L'Hospital rule for the rest. This yields the quadratic equation 
for x = dZ/dF 

X 
(7 - 1 )  (P- 1)  F -  (47 + 1)  - (Y - 1) 

1 - P  X 2  + 

The roots of (37) give the slopes of the two axes of the saddle point for any value 
of /3. There are only two particular values of this parameter for one of the axes at  
two specific points on the locus of singularities that have physical meaning, and 
bhat pass through point S ,  representing the proper boundary conditions at the 
front, Its co-ordinates are given by ( 3 5 ) .  In  order to find the proper values of /3, 
we employed a trial-and-error technique, using the Runge-Kutta method to  
integrate ( 3 4 ) ,  starting from points lying in the close vicinity of the locus of 
singularities whose co-ordinates were determined by appropriate roots of ( 3 7 ) ,  
until F = 4. We considered that the correct value for p was obtained when 
IZ-Z,l < 10-6. 

4.3 .  Reszclts 

Critical values of p, evaluated in the manner described above for y = 1.2 and 1.4, 
are listed in table 2 .  Given in brackets are values of 21" based on the results of 
Hayes (1968a, b )  which, according to (32), should be identical to ours. This is, 
indeed, practically so; the small deviations are due, no doubt, to different 
numerical techniques. The corresponding integral curves are presented in 
figure 7. The lower curve (ii) corresponds to the ascending, the upper (iii) t.0 the 
descending direction. 

It now remains to check how well the near-field solutions match with the 
asymptotic far-field results. In  order to examine the evolution of the flow field, we 
show in figure 8 integral curves of the near-field solution on the F ,  2 plane in the 
neighbourhood of the shock front for various values of Q, together with the 
asymptotic curve corresponding to w = 00 (curve (i)) for the ascending part, and 
that corresponding to w = -00 (curve (ii)) for the descending part of t.he blast 
wave. As may be seen there, slopes of integral curves corresponding to  a near- 
field solution approach that of curve (i) as the positive values of w increase, 
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0.8 0.8 1 0.82 0.83 044 

F 

FIGURE 8. Integral cur\-es in the immediate neighbourhood of the shock for various values 
of w(y  = 1.4). Curves (i) and (ii) are asymptotic similarity solutions for ascending and 
descending directions respectively. 

while integral curves for increasing negative values of w tend in their entirety 
towards curve (ii). 

With respect to  shock trajectories, the most interesting feature is the blow-out 
time. I n  order to examine how near-field solutions approach the asymptotes, we 
employed (31) with cose = 1; was evaluated using (21), and T determined 
from ( 2 2 ) .  For direct comparison with LP, the results of this procedure are pre- 
sented in terms of r = T f t ,  the time scale of LP. It appears that, for w = 10, our 
solution already reaches the asymptotic values of 13.7 for y = 1.2 and 9.5 for 
y = 1.4. However, the corresponding asymptotes of LP are 28.11 and 16-16, 
respectively, about twice as large as ours. Since our results are in agreement with 
those of Raizer (1964a, b)  and Hayes (1968a, b) ,  we are led to the conclusion that 
the approximation to second order in the integral technique of LP leads to an 
overestimate of the blow-out time. 

5.  Approximate solution 
Most salient features of blast waves in exponential atmospheres can be 

described qualitatively by means of a simple approximate solution, based on 
the notion that the energy integral f is a relatively insensitive function of w. 
This is evident from the coefficient of the polynomial expansion for 9 listed in 
table 1, indicating that this is indeed so, provided that IwI is not too large. One 
can therefore neglect the first term in (9), and assume that 

h = 3-0. (38) 
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12 - 

Asymptote N 9.5 

1 2 3 4 5 6 I 8 9 

0 

FIGURE 9. Blow-out time T~ as a function of m,  the decay parameter of 
atmospheric density. 

Equation (38) is the condition for the locus of singularities B, the famous 
Taylor-Sedov solution, which, as demonstrated by Oppenheim et al. (1972), is 
valid for variable w .  The locus is given by the algebraic equation 

and it passes through point S ,  thus satisfying the strong-shock boundary condi- 
tion. In figure 7 it is represented by curve (iv). Equation (39) is a particular 
solution of (34) for /3 = 1 .  

By comparing (38) with the expression for h used in (18) and (21)-(23), i t  
appears immediately that, for the approximate solution, 

H ( w )  = w .  

As a consequence of this, (21)-(23) yield straightforward expressions for the front 
velocities, trajectories, and envelopes, which are independent of y. I n  particular, 
using ( 4 a ) ,  one obtains for the front trajectory 

J O  

which for the blow-out time yields immediately 

The front envelope of the approximate solution evaluated for T = 7 is shown 
by broken lines in figure 4. The descending part agrees very well with the exact 



On blast waves in exponential atmospheres 121 

solution, while the ascending portion grows faster, especially in the vertical direc- 
tion, acquiring a more oblong shape. The plots of front velocities against position, 
corresponding to the approximate solution, are given in figure 6 by curves (iii). 
Here again there is a perfect agreement in the descending direction, while the 
ascending part exhibits a faster acceleration. I n  fact, the blow-out time evaluated 
from (41) is TB = 7.5468, in contrast to the more exact asymptotic value of 
14-6018. 

I n  spite of the significant discrepancy in the integral curves on the F ,  Z plane 
in figure 7, the agreement between front trajectories of the approximate and 
asymptotic solutions is surprisingly good. Moreover, it is of interest to  note 
that the value of B = 1 for the approximate solution is practically an average of 
the two asymptotic values given in table 2. 

6. Conclusions 
A perturbation solution for the problem of the strong blast waves in an 

exponential atmosphere has been obtained, which is exact for the near field (i.e. 
short times following initiation), and is quite accurate even when the front has 
progressed as much as ten atmospheric scale lengths. This has been matched with 
an asymptotic far-field solution (i.e. one corresponding to long times after initia- 
tion). The latter is independent of the memory of earlier stages, a feature associ- 
ated with the transition of its integral curve across a saddle point. I n  addition, 
a fully-algebraic approximate solution has been found, which is quite accurate 
for short times after initiation, while exhibiting also many of the important 
features of the motion a t  later times. 

Characteristic properties of the flow field are expressed in terms of integral 
curves on an appropriate phase plane for blast waves. Integral curves for the 
near field and far field are significantly different from that of the classical Taylor- 
Sedov solution, while the approximate solution represents, in effect, its applica- 
tion to the case of an exponential atmosphere, a property that has not been 
realized before. 

As far as the motion of the front is concerned, the matching between the near- 
field and far-field solutions has been shown to be so good that the determination 
of an intermediate solution became unnecessary. The agreement between the 
results of the exact and approximate solutions for the motion of the front into 
the denser medium is most satisfactory. For the motion into the rarefying atmo- 
sphere, there are some deviations leading to an underestimate, by a factor of 
almost two, of the blow-out time, i.e. the time a t  which t,he velocity of the front 
becomes infinite. 
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